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Motivation
• Why is context-aware network forecasting relevant for 

autonomous driving?
• Level 4 autonomous vehicles must maintain continuous connectivity with 

a remote supervisor (required by German law)
• Connection loss → vehicle must perform a controlled stop
• Reliable mobile network availability forecasting is critical to ensure 

uninterrupted connectivity
• Environmental and temporal factors strongly influence this highly 

dynamic system of a vehicle moving along a route



Problem Statement
• Mobile network quality varies 

due to spatial, temporal and 
environmental influences

• Existing coverage maps fail to 
capture real-time variability

• Goal: Develop a context-
aware prediction model for 
mobile signal quality



Related Work (examples)
• Torres et al. (2017): LTE congestion forecasting - no contextual 

parameters
• Madariaga et al (2018): Weather impact on QoS - no dynamic or 

route-based modelling
• Schippers et al. (2025): 5G measurement dataset - urban focus 

and no consideration of weather features

→ This study: long-term, rural, context-aware forecasting



Background: Mobile Networks
• LTE and 5G technologies form the 

backbone of vehicular 
communication

• Passive signal parameters (shown 
right) indicate performance and 
stability
• RSSI: Total received power
• RSRP: Average power of reference 

signals
• RSRQ: Ratio of RSRP to RSSI
• SINR: Defines link quality and 

achievable data rate



Measurement Device Setup



Data Collection
38 measurement drives 
over 10 months along a 
64 km rural route        
(B16, Germany)

≈ 60,000 data points 
recorded in both driving 
directions



Correlations with Contextual Factors
• Several environmental and 

temporal factors show 
measurable correlations with 
signal quality metrics

• Higher temperature → lower 
connection quality

• Base station distance              
→ weaker signals

• Speed → no relevant 
influence



Exploratory Data Analysis (EDA)

• Route segmented into 200m 
reference points for 
comparison

• Location dependency but 
high variability between runs
→ Motivation for adding  
contextual parameters to 
prediction



Prediction Model



Results and Insights

• Contextual information 
improves signal forecasting 
accuracy

• Correlated features lead to 
higher Mean Absolute Error

• Linear models capture 
trends but not complex 
interactions

Table: MAE comparison of baseline, best single 
feature, and best feature combination



Conclusion and Future Work
• Incorporating contextual information improves network prediction 

for automated vehicles
• Context-aware prediction can support route planning and 

connectivity management
• Future Work:

• Apply nonlinear ML models (e.g. gradient boosting, neural networks)
• Extend dataset across seasons and traffic conditions
• Integrate additional features such as traffic density, infrastructure 

obstacles, or environment topography
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